On group averaging for non–compact groups
نویسنده
چکیده
We review some aspects of the use of a technique known as group averaging, which provides a tool for the study of constrained systems. We focus our attention on the case where the gauge group is non–compact, and a ‘renormalized’ group averaging method must be introduced. We discuss the connection between superselection sectors and the rate of divergence of the group averaging integral.
منابع مشابه
Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups
We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...
متن کاملOn component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
متن کاملThe effect of compact fluorescent lamp and curcumin on wound healing in Wistar Rats
Background: Nowadays, the rapid recovery of skin lesions and functional return are among the goals of researchers. The skin is the first defensive barrier against microorganisms in the body and its failure causes infection to spread in all systems of the body. By taking into account the contradictory results of previous studies on the impact of phototherapy on wound healing and also the conside...
متن کاملBracket Products on Locally Compact Abelian Groups
We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).
متن کاملOn continuous cohomology of locally compact Abelian groups and bilinear maps
Let $A$ be an abelian topological group and $B$ a trivial topological $A$-module. In this paper we define the second bilinear cohomology with a trivial coefficient. We show that every abelian group can be embedded in a central extension of abelian groups with bilinear cocycle. Also we show that in the category of locally compact abelian groups a central extension with a continuous section can b...
متن کامل